Know more

About cookies

What is a "cookie"?

A "cookie" is a piece of information, usually small and identified by a name, which may be sent to your browser by a website you are visiting. Your web browser will store it for a period of time, and send it back to the web server each time you log on again.

Different types of cookies are placed on the sites:

  • Cookies strictly necessary for the proper functioning of the site
  • Cookies deposited by third party sites to improve the interactivity of the site, to collect statistics

Learn more about cookies and how they work

The different types of cookies used on this site

Cookies strictly necessary for the site to function

These cookies allow the main services of the site to function optimally. You can technically block them using your browser settings but your experience on the site may be degraded.

Furthermore, you have the possibility of opposing the use of audience measurement tracers strictly necessary for the functioning and current administration of the website in the cookie management window accessible via the link located in the footer of the site.

Technical cookies

Name of the cookie


Shelf life

CAS and PHP session cookies

Login credentials, session security



Saving your cookie consent choices

12 months

Audience measurement cookies (AT Internet)

Name of the cookie


Shelf life


Trace the visitor's route in order to establish visit statistics.

13 months


Store the anonymous ID of the visitor who starts the first time he visits the site

13 months


Identify the numbers (unique identifiers of a site) seen by the visitor and store the visitor's identifiers.

13 months

About the AT Internet audience measurement tool :

AT Internet's audience measurement tool Analytics is deployed on this site in order to obtain information on visitors' navigation and to improve its use.

The French data protection authority (CNIL) has granted an exemption to AT Internet's Web Analytics cookie. This tool is thus exempt from the collection of the Internet user's consent with regard to the deposit of analytics cookies. However, you can refuse the deposit of these cookies via the cookie management panel.

Good to know:

  • The data collected are not cross-checked with other processing operations
  • The deposited cookie is only used to produce anonymous statistics
  • The cookie does not allow the user's navigation on other sites to be tracked.

Third party cookies to improve the interactivity of the site

This site relies on certain services provided by third parties which allow :

  • to offer interactive content;
  • improve usability and facilitate the sharing of content on social networks;
  • view videos and animated presentations directly on our website;
  • protect form entries from robots;
  • monitor the performance of the site.

These third parties will collect and use your browsing data for their own purposes.

How to accept or reject cookies

When you start browsing an eZpublish site, the appearance of the "cookies" banner allows you to accept or refuse all the cookies we use. This banner will be displayed as long as you have not made a choice, even if you are browsing on another page of the site.

You can change your choices at any time by clicking on the "Cookie Management" link.

You can manage these cookies in your browser. Here are the procedures to follow: Firefox; Chrome; Explorer; Safari; Opera

For more information about the cookies we use, you can contact INRAE's Data Protection Officer by email at or by post at :


24, chemin de Borde Rouge -Auzeville - CS52627 31326 Castanet Tolosan cedex - France

Last update: May 2021

Menu Logo Principal Clermont Auvergne University


Joint Research Unit 1095 Genetics, Diversity and Ecophysiology of Cereals

Caroline Pont

2016 oct - Translational research in bread wheat: understanding the genome evolution to improve its agronomic traits

Wheat plays a key role in Human food due to its nutritional value. Wheat production needs to be increased by more than 20% by 2050 to guarantee current human consumption standards. Taking into account climatic changes with high level of environmental constraints, yield improvement without quality loss became a big challenge. This consists in the economical and societal context of the current doctoral thesis.

The integrative translational genomic approach consists in transferring fundamental knowledge gained from model species to applied practices for breeding in crops. This strategy was used here to study the evolutionary history, the organization and the regulation of the modern bread wheat genome. Modern wheat is a polypoid species deriving from two hybridization events between diploid progenitors 500 000 and 10 000 years ago, as well as a more ancient that dated back to more than 90 million years ago. The current research consisted in using cereal species closely related to wheat to study the impact of these duplications on the structural and expression plasticity of duplicated genes in wheat.

Our results established that the diploidization process is in progress in wheat after the successive rounds of polyploidization events. This diploidization consists in the accumulation of mutations, gene loss or expression modification between duplicated genes. This diploidization is nonrandom at the genome level; generating dominant chromosomic regions with high stability in contrast to others regions more sensitive with high plasticity. Based on such wheat genome evolutionary analysis, polyploidy appears as a major evolutionary force driving plant adaptation through structural and expressional specialization of duplicated genes.

Such post-polyploidy genomic asymmetry drives finally the phenotype diploidization as illustrated in the current research with the study of genetic basis of the tiller inhibition Trait. This trait seems to be driven by a 109 pb insertion coding for a microRNA located solely on the chromosome 1A, known as a sensitive genomic fraction.

The current research established that the modern bread wheat has been quasi-entirely diploidized at the structural, expressional and phenotypic levels, now requiring a new definition of the polypoid concept in line with current genomic investigations, as illustrated in the current thesis.